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Abstract

Typically, models of dynamical systems are stated as recursive equations, that is,
making multiple step predictions with them involves recursively applying them-
selves to their output. Such models are good for one-step ahead predictions, but
when used for multi-step prediction, they suffer from compounding errors. When
controlling dynamical systems, we seek a control sequence to apply the system,
and therefore, we require dynamical system models that are accurate over multiple
steps. In this paper, we suggest that one should use a direct forecasting model
rather than a recursive forecasting model, and we interpret the resulting model
predictive control optimization problem. The only downsides to using such a
model are that it requires more storage and results in a dense (as opposed to sparse)
optimization problem, both of which are not issues except for in extremely memory
or compute-constrained applications.

1 Preliminaries

Many continuous systems are modeled using a discrete-time state-space model. In a fully-observed
discrete-time state-space model, the state xt ∈ Rn describes the system at time t and the control
ut ∈ Rm is applied to the system at time t. The system is assumed to evolve based on the following
equation

xt+1 = ft(xt, ut). (1)
Assuming this model, optimal control laws can be found through model predictive control (MPC),
which solves the following problem at each time step

minimize cf (xN ) +
N−1∑
τ=0

c(xτ , uτ )

subject to xt+1 = ft(xt, ut), t = 0, . . . , N − 1,

ut ∈ Ut, t = 0, . . . , N − 1,

xt ∈ Xt, t = 0, . . . , N,

x0 = xinit

(2)

where {ut}N−1
t=0 are the optimization variables, c and cf are stage costs, and the sets Ut and Xt

represent constraints on the controls and states. If the dynamics are linear, i.e., ft(x, u) = Atx+Btu,
the stage costs are convex, and the state and control constraints are convex, then the problem can
efficiently be solved using convex optimization [1]. The resulting controller performs receding-
horizon control; it observes xt, solves the MPC problem, executes ut on the system, observes xt+1,
solves the new MPC problem, and repeats. However, in real control problems, the system is neither
linear nor time-invariant, and the system is stochastic, leading to model misspecification and hence a
sub-optimal controller.
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2 Problems with MPC

The main philosophy behind MPC is that we should choose controls to optimize the state trajectory
as predicted by our model ft. However, one of the main issues with MPC as stated in (2) is the way
that it predicts future states. Its prediction for the state x̂t+i is f recursively applied i− 1 times. As a
simple example, assume the true underlying model is xt+1 = Axt, i.e., B = 0. Then if the learned
dynamics are Â = A + ∆A, the error in the prediction for time t starting at time 0 is

‖xt − x̂t‖22 = ‖Atx0 − (A + ∆A)tx0‖22
= ‖

[
At − (A + ∆A)t

]
x0‖22.

(3)

The At term cancels with the At term of (A + ∆A)t, but the remaining sum of matrices can lead to
a large accumulation of errors, especially if A has singular values close to 1. This accumulation of
errors is similar to what happens in numerical integration.

Suppose one has an observation of xt and would like to select a matrix A to predict xt from x0. One
could then define an objective

L(A) = ‖xt −Atx0‖22,

but this objective is nonconvex in A, even for a single training example.

Further, not all linear mappings Cx0 are representable by a matrix to an integer power. As a simple
example, if x0 = 1 and x2 = −5, there is no real number c where c2 = −5. This leads to significant
bias in MPC’s predictions for future states.

3 Direct Model Predictive Control

Instead of representing our prediction for future states iteratively, we propose that we should represent
our prediction for future states as a direct model, i.e., N separate models for each time horizon. At a
state x0, our prediction for the next N states are then

x̂1 = f1(x0, u0)

x̂2 = f2(x0, u0, u1)

...
x̂N = fN (x0, u0, . . . , uN−1).

(4)

This requires the construction of N separate models that predict all states in the prediction horizon as
a function of the (current) state x0 and control inputs up to that point in time. One way we can learn
such a model after observing trajectories on the system is by setting up (and solving) N least-squares
problems. We can integrate then these N prediction models into MPC via the following Direct MPC
(DMPC) problem

minimize cf (xN ) +

N−1∑
τ=0

c(xτ , uτ )

subject to xt = ft(x0, ut, . . . , ut+N−1), t = 1, . . . , N,

ut ∈ Ut, t = 0, . . . , N − 1,

xt ∈ Xt, t = 0, . . . , N,

x0 = xinit.

(5)

If lf and l are convex, fi are affine, and Ut and Xt are convex sets, we can efficiently solve for the
global minimum (or verify infeasibility) of (5) using a convex solver, as was the case in MPC. If they
are not, we can use a nonconvex solver, based on, e.g., sequential convex programming, to find an
(approximate) solution.

One important thing to note is that models representable by a recursive model are a subset of those
representable by a direct prediction model. This is easy to see, by setting f1(x0, u0) = f(x0, u0),
then setting f2(x0, u0, u1) = f(f(x0, u0), u1), and so on.
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Figure 1: Variable dependency diagram for standard MPC problem (2).

Figure 2: Variable dependency diagram for direct model predictive control problem (5).

Interpretations A great way to interpret the resulting optimization problem is visually. A variable
dependency graph of the original MPC problem (2) for a time horizon of N = 3 is displayed in
Figure 1. We focus on the dependency of the costs on the control variables u0, u1, u2. The variable
u0 directly affects the first stage cost, then affects the next stage cost through f , then affects the rest of
the costs by repeatedly going through the function f . This is contrasted with the variable dependency
graph of (5) in Figure 2. In this case, u0 directly affects the stage cost by being passed through f1, f2,
and f3, without any recursive applications of predictors. One direct advantage of this is that when
computing derivatives of c with respect to one of the controls, we only need to differentiate through
one prediction function, rather than up to N of them, which can lead to vanishing or exploding
gradients and an unstable optimization procedure (particularly when the problem is nonconvex).

Training Difficulty? One potential counter-argument for the use of direct predictive models is that
training N separate models will require N times the data. However, this is not the case. Suppose one
has measured T pairs (xt, ut). Then to fit N models at different horizons, one sets up and solves N
least-squares problems (all at different horizons). For example, the first problem is given by

minimize
T∑
t=1

‖xt+1 − f1(xt, ut)‖22

and the second is given by

minimize
T−1∑
t=1

‖xt+2 − f2(xt, ut, ut+1)‖22.

Each model fi is trained using T − i examples, so in fact, each model gets the same amount of data
because it is reused.
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4 Conclusion

In this paper, we described a modeling strategy for dynamical systems that circumvents the issue of
compounding errors in recursive prediction models. We proposed a solution that relies on a direct
prediction model, i.e., it has a different model for each state in the horizon. Using a direct prediction
model is strictly a generalization of a recursive prediction model. The only downsides are that it
requires more storage and results in a dense (as opposed to sparse) optimization problem, both of
which are not issues except for in extremely memory or compute-constrained applications. In future
work, we hope to do an extensive comparison between MPC and DMPC across a variety of control
tasks.
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